问答题 已知,求。
问答题 一种完全离散型2年期两全保险保单的生存给付为1000元,每年的死亡给付为1000元加上该年年末的纯保费责任准备金,且利率i=6%,qx+k=0.1×1.1k(k=0,1)。计算年缴均衡纯保费P。
问答题 已知计算
问答题 (x)购买的n年限期缴费完全离散型终身寿险保单,其各种费用分别为:销售佣金为营业保费的6%;税金为营业保费的4%;每份保单的第1年费用为30元,第2年至第n年的费用各为5元;理赔费用为15元。且,保额b以万元为单位,求保险费率函数R(b)。
问答题 设15P45=0.038,。
问答题 已知i=0.05,px+1=0.022,px=0.99,则px=?。
问答题 已知P62=0.0374,q62=0.0164,i=6%,求P63。
问答题 有两份寿险保单,一份为(40)购买的保额2000元、趸缴保费的终身寿险保单,并且其死亡保险金于死亡年末给付;另一份为(40)购买的保额1500元、年缴保费P的完全离散型终身寿险保单。已知第一份保单的给付现值随机变量的方差与第二份保单在保单签发时的保险人亏损的方差相等,且利率为6%,求P的值。
问答题 设则利息强度δ=()0.0684。
问答题 某人将期末延期终身生存年金1万元遗留给其子,约定延期10年,其子现年30岁,求此年金的精算现值。
问答题 Y是x岁签单的每期期末支付1的生存年金的给付现值随机变量,已知求Y的方差。
问答题 很多年龄为23岁的人共同筹集基金,并约定在每年的年初生存者缴纳R元于此项基金,缴付到64岁为止。到65岁时,生存者将基金均分,使所得金额可购买期初付终身生存年金,每年领取的金额为3600元。试求数额R。
问答题 某人现年55岁,在人寿保险公司购有终生生存年金,每月末给付年金额250元,试在UDD假设下和利率6%下,计算其精算现值。
问答题 某人现年23岁,约定于36年内每年年初缴付2000元给某人寿保险公司,如中途死亡,即行停止,所缴付款额也不退还。而当此人活到60岁时,人寿保险公司便开始给付第一次年金,直至死亡为止。试求此人每次所获得的年金额。
问答题 设年龄为30岁者购买一死亡年末给付的终身寿险保单,依保单规定:被保险人在第一个保单年度内死亡,则给付10000元;在第二个保单年度内死亡,则给付9700元;在第三个保单年度内死亡,则给付9400元;每年递减300元,直至减到4000元为止,以后即维持此定额。试求其趸缴纯保费。
问答题 某一年龄支付下列保费将获得一个n年期储蓄寿险保单: (1)1000元储蓄寿险且死亡时返还趸缴纯保费,这个保险的趸缴纯保费为750元。 (2)1000元储蓄寿险,被保险人生存n年时给付保险金额的2倍,死亡时返还趸缴纯保费,这个保险的趸缴纯保费为800元。若现有1700元储蓄寿险,无保费返还且死亡时无双倍保障,死亡给付均发生在死亡年末,求这个保险的趸缴纯保费。
问答题 设某30岁的人购买一份寿险保单,该保单规定:若(30)在第一个保单年度内死亡,则在其死亡的保单年度末给付5000元,此后保额每年递增1000元。求此递增终身寿险的趸交纯保费。
问答题 设年龄为50岁的人购买一张寿险保单,保单规定:被保险人在70岁之前死亡,给付金额为3000元;如至70岁仍生存,给付金额为1500元。试求该寿险保单的趸交纯保费。
问答题 现年35岁的人购买了一份终身寿险保单,保单规定:被保险人在10年内死亡,给付金额为15000元;10年后死亡,给付金额为20000元。试求趸缴纯保费。
问答题 现年30岁的人,付趸缴纯保费5000元,购买一张20年定期寿险保单,保险金于被保险人死亡时所处保单年度末支付,试求该保单的保险金额。