问答题
设随机变量X和Y独立,其中X的概率分布为X~,而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).
问答题 设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为0<p,且中途下车与否相互独立,以y(p<1)表示在中途下车的人数,求: (1)在发车时有n个乘客的条件下,中途有m人下车的概率; (2)二维随机变量(X,Y)的概率分布。
问答题 设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X和Y的边缘分布律中的部分数值试将其余数值填入表中的空白处。
问答题 设平面区域D由曲线y=1/x及直线,y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,求(X,Y)关于X的边缘概率密度在x=2处的值为多少?